9.7 When Constructors and Destructors Are
Called (cont.)

Constructors and Destructors for Local Objects

Constructors and destructors for local objects are called each
time execution enters and leaves the scope of the object.

Destructors are not called for local objects if the program
terminates with a call to function ex1 t or function abort.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.7 When Constructors and Destructors Are
Called (cont.)

Constructors and Destructors for static Local Objects

« The constructor for a static local object is called only once,
when execution first reaches the point where the object is
defined—the corresponding destructor is called when main
terminates or the program calls function ex1 t.

« Global and stat1ic objects are destroyed in the reverse order of
their creation.

 Destructors are not called for static objects if the program
terminates with a call to function abort.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.7 When Constructors and Destructors Are
Called (cont.)

Demonstrating When Constructors and Destructors Are Called

The program of Figs. 9.7-9.9 demonstrates the order in which
constructors and destructors are called for objects of class
CreateAndDestroy (Fig. 9.7 and Fig. 9.8) of various storage
classes in several scopes.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

VO~ UBNDE WN =

16
17
18
19
20

// Fig. 9.7: CreateAndDestroy.h

// CreateAndDestroy class definition.

// Member functions defined in CreateAndDestroy.cpp.
#include <string>

using namespace std;

#1ifndef
#define

class CreateAndDestroy
{
public:
CreateAndDestroy(1int, string); // constructor
~CreateAndDestroy(); // destructor
private:
int objectID; // ID number for object
string message; // message describing object
}; // end class CreateAndDestroy

#endif

Fig. 9.7 | CreateAndDestroy class definition.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 9.8: CreateAndDestroy.cpp

2 // CreateAndDestroy class member-function definitions.

3 #include <iostream>

4 #include // include CreateAndDestroy class definition
5 using namespace std;

6

7 // constructor sets object's ID number and descriptive message
8 CreateAndDestroy: :CreateAndDestroy(int ID, string messageString)
9 : objectID(ID), message(messageString)

10 {

11 cout << << objectID <<

12 << message << endl;

I3 } // end CreateAndDestroy constructor

14

I5 // destructor

16 CreateAndDestroy: :~CreateAndDestroy()

17 {

I8 // output newline for certain objects; helps readability

19 cout << (objectID == | | objectID == ? :);
20
21 cout << << objectID <<
22 << message << endl;

23 } // end ~CreateAndDestroy destructor

Fig. 9.8 | CreateAndDestroy class member-function definitions.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

// Fig. 9.9: fig09_09.cpp

// Order in which constructors and

// destructors are called.

#include <iostream>

#include // include CreateAndDestroy class definition
using namespace std;

void create(void); // prototype

OoOo~NOTUnNHh WN=

10 CreateAndDestroy first(|,); // global object
11
12 int main()

13 {

14 cout << << endl;

15 CreateAndDestroy second(-,);
16 static CreateAndDestroy third(°,);
17

I8 create(); // call function to create objects

19

20 cout << << endl;

21 CreateAndDestroy fourth(-,);
22 cout << << endl;

23 } // end main

24

Fig. 9.9 | Order in which constructors and destructors are called. (Part | of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

25 // function to create objects
26 void create(void)

27 {

28 cout << << endl;

29 CreateAndDestroy fifth(-,)

30 static CreateAndDestroy sixth(©,);
31 CreateAndDestroy seventh(-,);
32 cout << << endl;

33 1} // end function create

Fig. 9.9 | Order in which constructors and destructors are called. (Part 2 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Object 1 constructor runs (global before main)

MAIN FUNCTION: EXECUTION BEGINS
Object 2 constructor runs (Tocal automatic in main)
Object 3 constructor runs (local static in main)

CREATE FUNCTION: EXECUTION BEGINS

Object 5 constructor runs (local automatic 1in create)
Object 6 constructor runs (local static in create)
Object 7 constructor runs (Tocal automatic in create)

CREATE FUNCTION: EXECUTION ENDS
Object 7 destructor runs (Tocal automatic in create)
Object 5 destructor runs (local automatic 1in create)

MAIN FUNCTION: EXECUTION RESUMES
Object 4 constructor runs (local automatic in main)

MAIN FUNCTION: EXECUTION ENDS

Object 4 destructor runs (local automatic in main)
Object 2 destructor runs (Tocal automatic in main)
Object 6 destructor runs (local static in create)
Object 3 destructor runs (local static in main)
Object 1 destructor runs (global before main)

Fig. 9.9 | Order in which constructors and destructors are called. (Part 3 of 3.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.8 T1me Class Case Study: A Subtle Trap—
Returning a Reference or a Pointer to a private
Data Member

A reference to an object Is an alias for the name of the object and,
hence, may be used on the left side of an assignment statement.

In this context, the reference makes a perfectly acceptable /value
that can receive a value.

Unfortunately a pub 11 c member function of a class can return a
reference to a private data member of that class.

Such a reference return actually makes a call to that member
function an alias for the private data member!

— The function call can be used in any way that the private data
member can be used, including as an /value in an assignment statement

— The same problem would occur if a pointer to the private data were
to be returned by the function.
If a function returns a reference that’s declared const, the
reference 1s a non-modifiable /value and cannot be used to
modify the data.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

9.8 T1me Class Case Study: A Subtle Trap—
Returning a Reference or a Pointer to a private
Data Member

e The program of Figs. 9.10-9.12 uses a simplified T1me class
(Fig. 9.10 and Fig. 9.11) to demonstrate returning a reference to a
private data member with member function badSetHour.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 9.10: Time.h

2 // Time class declaration.

3 // Member functions defined in Time.cpp
4

5 // prevent multiple inclusions of header
6 #ifndef

7 #define

8

9 class Time

10 {
11 public:

12 explicit Time(int = 0, int = 0, 1int = 0);
13 void setTime(int, int, 1int);

14 unsigned int getHour() const;

15 unsigned int &badSetHour(int); // dangerous reference return
16 private:

17 unsigned int hour;

18 unsigned int minute;

19 unsigned int second;
20 }; // end class Time
21
22 #endif

Fig. 9.10 | Time class declaration.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

—
CcCwVwO~NONUNDAWN=

- e
onbh WN =

17
18
19
20
21
22
23
24

// Fig. 9.11: Time.cpp

// Time class member-function definitions.

#include <stdexcept>

#include // include definition of class Time
using namespace std;

// constructor function to initialize private data; calls member function
// setTime to set variables; default values are 0 (see class definition)
Time::Time(int hr, int min, int sec)
{

setTime(hr, min, sec);
} // end Time constructor

// set values of hour, minute and second
void Time::setTime(int h, int m, 1int s)
{
// validate hour, minute and second
if ((h >= && h <) && (m>= 0 && m <) &&

(s>=0 & s <))
{

hour = h;

minute = m;

second = s;
} // end if

Fig. 9.11 | Time class member-function definitions. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

25 else

26 throw invalid_argument(

27 D
28 1} // end function setTime

29

30 // return hour value
31 unsigned 1int Time::getHour()

32 {

33 return hour;

34 1} // end function getHour
35

36 // poor practice: returning a reference to a private data member.
37 unsigned int &Time: :badSetHour(int hh)

38 {

39 if (hh >= 0 & hh <)

40 hour = hh;

41 else

42 throw invalid_argument();
43

44 return hour; // dangerous reference return

45 } // end function badSetHour

Fig. 9.11 | Time class member-function definitions. (Part 2 of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

Software Engineering Observation 9.7

Returning a reference or a pointer to a private data
member breaks the encapsulation of the class and makes
the client code dependent on the representation of the
class’s data. There are cases where doing this is
appropriate—we’ll show an example of this when we
build our custom Array class in Section 10.10.

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

I // Fig. 9.12: fig09_12.cpp

2 // Demonstrating a public member function that

3 // returns a reference to a private data member.

4 #include <iostream>

5 #include // include definition of class Time

6 using namespace std;

7

8 int main()

9 {

10 Time t; // create Time object

11

12 // initialize hourRef with the reference returned by badSetHour
13 int &hourRef = t.badSetHour(20); // 20 is a valid hour

14

15 cout << "Valid hour before modification: " << hourRef;

16 hourRef = 30; // use hourRef to set invalid value in Time object t
17 cout << << t.getHour();
I8

19 // Dangerous: Function call that returns
20 // a reference can be used as an lvalue!
21 t.badSetHour(12) = 74; // assign another invalid value to hour
22

Fig. 9.12 | pub1ic member function that returns a reference to a private
data member. (Part | of 2.)

©1992-2014 by Pearson Education, Inc. All
Rights Reserved.

